The IFGC, IPC AND IRC-P Technical Advisory Committee consisted of nine members:

John Kampmeyer, CHAIR
Mitchell Swann
Ed Fegley
Matt Wojaczyk
Dan Corbet
Robert Rosser
Sean Cleary
Walt Krzyzanowski
Michael McGraw

REVIEW OF PUBLIC COMMENTS

The first task of the TAC was to review the public comments which were submitted. Attached is the Report on the Public Comments which was submitted on January 5.

The TAC recommends the following changes to the IPC:

TAC Recommendation No. 1 - Modify P2503.5.1 as follows:

P2503.5.1 Rough plumbing. DWV systems shall be tested on completion of the rough piping installation by water or, for piping systems other than plastic unless the pipe manufacturer allows air testing, by air, without evidence of leakage.

Reason

Air testing is often performed in cold temperatures where water cannot be used. Plastic pipe manufacturers generally indicate in their instructions that air pressure testing should not be used and it was felt that the code should not override manufacturers requirements. The added statement allows that some manufacturers may allow air pressure testing and item 2 in this section reads
P2503.5.2 Air test. The portion under test shall be maintained at a gauge pressure of 5 pounds per square inch (psi) (34 kPa) or 10 inches of mercury column (34 kPa). This pressure shall be held without introduction of additional air for a period of 15 minutes.

TAC Recommendation No. 2 – Modify P2906.6.1 as follows:

P2906.6.1 Saddle tap fittings. The use of saddle tap fittings and combination saddle tap and valve fittings shall be prohibited be limited to metallic piping.

Reason

The ICC comment that added this section stated “As PEX, PE-RT and CPVC tubings are becoming even more popular than ever for water distribution systems in residential buildings, there are more reports of saddle tap fittings being installed on these types of tubing. This just doesn't work out very well”.

There was no indication that there are problems with the use of saddle tap fittings on metallic pipe so the TAC felt that saddle tap fitting should still be allowed on metallic pipe.

The TAC recommends the following change to the Reference Standards in the IFGC:

TAC Recommendation No.3 – Add LC 1/CSA 6.26-201318: Fuel Gas Piping Systems Using Corrugated Stainless-Steel Tubing (CSST) to the CSA Reference Standards

Reason

CSA LC-1 does not appear in the Referenced Standards, but ANSI LC-1/CSA 6.26 or ANSI LC-4 does appear in Section 404.5 Fittings in concealed locations.

The standard should be added to the Referenced Standards. Depending on whether the 2016 or the 2018 Edition is used will depend of Sean Cleary’s review of the standards to see if going to the 2018 standard will be incompatible with the wording in the code.
REVIEW OF CODE CHANGES TO THE IPC

Six of the nine members of the TAC voted on the changes to the IPC. These votes were tallied and based on the majority of the votes, all of the changes to the IPC are recommended for adoption. Attached is the summary of the voting.

REVIEW OF CODE CHANGES TO THE IRC-P

Five of the nine members of the TAC voted on the changes to the IPC. These votes were tallied and based on the majority of the votes, all of the changes to the IPC are recommended for adoption. Attached is the summary of the voting.

REVIEW OF CODE CHANGES TO THE IFGC

Five of the nine members of the TAC voted on the changes to the IPC. These votes were tallied and based on the majority of the votes, all of the changes to the IPC are recommended for adoption. Attached is the summary of the voting.
The IFGC, IPC, IRC-P TAC held a teleconference on December 19, 2019 and reviewed the comments received on the IFGC and IPC Codes. No comments were received on the IRC-P Code, although they were incorporated into the IPC comments. All of the comments were discussed and action decided. Attached are the results of the discussion.

All of the Code Changes for the IFGC, IPC and IRC-P codes received from ICC were distributed to the TAC along with Review Forms for the Codes. To date, filled out forms have been received from two members of the TAC. When all have been received, the votes will be tallied and the results issued to the Council.

Respectfully Submitted,

John E. Kampmeyer, P.E., F.NSPE, F.SFPE, F.ASHRAE
COMMENT NO. 1

Amal Mahrouki
240 N 3rd Street
12th Floor
Harrisburg, PA 17101
amahrouki@aiapa.org
717-236-4055

Fuel Gas Code (IFGC)

Adopt

Reason: Health, Safety and Welfare
No Data Submitted
This is a General Comment to adopt all of the changes to the Fuel Gas Code.

JEK COMMENT

This is a general comment for complete adoption of the 2018 IPC. In view of the fact that Act 36 mandates that all of the changes to the code be reviewed, I don’t think we can consider this until we have completed the review of the code changes.

TAC DECISION

The RAC Recommends holding on action on this item to see if further comments on it are received.
COMMENT NO 2

Sarah Miller
2509 North Front St
Harrisburg, PA 17110
smiller@pabuilders.org
717-571-6488

G2427.5.10 (503.5.11) Insulation shield

Modify
Reason: Other
See attached for suggested modification language.

Recommendation: Delete entire section but for the following: Insulation shields provided as part of a listed chimney system shall be installed in accordance with the manufacturer’s installation instructions.

Reason: Should be installed by manufactured installations instructions.

JEK COMMENT

G2427.5.10 (503.5.11) Insulation shield. Where a factory-built chimney passes through insulated assemblies, an insulation shield constructed of steel having a thickness of not less than 0.0187 inch (0.475 mm) (nominal 26 gage) shall be installed to provide clearance between the chimney and the insulation material. The clearance shall be not less than the clearance to combustibles specified by the chimney manufacturer’s installation instructions. Where chimneys pass through attic space, the shield shall terminate not less than 2 inches (51 mm) above the installation materials and shall be secured in place to prevent displacement. Insulation shields provided as part of a listed chimney system shall be installed in accordance with the manufacturer’s installation instructions.

The insulation shield is required to protect from overheating of insulation. This comment would remove all but the last sentence of the code section. The question remains as to handle situations where a listed insulation shield is not used.
TAC REPORT ON IFGC COMMENTS

TAC RECOMMENDATION

Not Recommended.

Without the wording in the first part of the section, if a field fabricated insulation shield is used or if an insulation shield that is not listed is used, there is no guidance on in the code.
COMMENT NO. 3

Jonathan Sargeant
1801 Crystal Drive
Apartment 711
Arlington, VA 22202
jonathan.sargeant@omegaflex.com
703-946-5848

Referenced Standards

Modify
Reason: Other
To update the CSA LC-1 standard reference to include the latest edition LC 1/CSA 6.26-201318: Fuel Gas Piping Systems Using Corrugated Stainless-Steel Tubing (CSST)

JEK COMMENT

CSA LC-1 does not appear in the Referenced Standards, but ANSI LC1/CSA 6.26—13 does appear and also appears in Section 404.5 Fittings in concealed locations.

RAC RECOMMENDATION

Accept
Under ANSI in the Referenced Standards, LC1/CSA 6.26—13: Fuel Gas Piping Systems Using Corrugated Stainless Steel Tubing (CSST) is listed. Changing this to LC1/CSA 6.26—18 clarifies the marking of the CSST.
TAC REPORT ON IPC COMMENTS

Comment No. 1

Amal Mahrouki
240 N 3rd Street
12th Floor
Harrisburg, PA 17101
amahrouki@aiapa.org
717-236-4055

Adopt
Reason Health Safety and Welfare - Technical Feasibility - Economic and Financial Impacts
No Data Submitted

JEK COMMENT

This is a general comment for complete adoption of the 2018 IPC. In view of the fact that Act 36 mandates that all of the changes to the code be reviewed, I don’t think we can consider this until we have completed the review of the code changes.

TAC RECOMMENDATION

Do not adopt

REASON

Th TAC is recommending modification to IRC 2503.5.1
Comment No. 2

Norm George
480 Washington Road
Waynesburg, PA 15370
socomfgeo@hotmail.com
724-591-0509

IRC Chapter25 IRC 2503.5.1

Adopt
Reason: Health Safety and Welfare

Recommendation:
No air testing on PVC pipe should be allowed due to fact that the manufacturer's,
PVC cement manufacturer's and pipe manufacturer's do not allow air testing on
PVC pipe. You have accepted this fact under the International building code but
previously made an exception for the International Residential Code. There is no
difference in the application whether it is residential or commercial.

JEK COMMENT

This applies to comments 2, and 4 and covers the plumbing provisions in the IRC

In the 2015 plumbing provisions in both the IPC and the IRC, air testing of plastic
piping was eliminated on the basis that failure of plastic pipe under air pressure
can result in projectiles being emitted. This was discussed at the RAC and the air
pressure elimination was retained in the IPC, but was deleted from the IRC.

RAC RECOMMENDATION

Modify the provision as follows:

P2503.5.1 Rough plumbing. DWV systems shall be tested on completion of the
rough piping installation by water or, for piping systems other than plastic unless
the pipe manufacturer allows air testing, by air, without evidence of leakage.
TAC REPORT ON IPC IPC COMMENTS

Reason

Air testing is often performed in cold temperatures where water cannot be used. Pipe manufacturers indicate in their instructions that air pressure testing should not be used and it was felt that the code should not override manufacturers requirements. The added statement allows that some manufacturers may allow air pressure testing and item 2 in this section reads

“2. Air test. The portion under test shall be maintained at a gauge pressure of 5 pounds per square inch (psi) (34 kPa) or 10 inches of mercury column (34 kPa). This pressure shall be held without introduction of additional air for a period of 15 minutes.
TAC REPORT ON IPC IPC COMMENTS

Comment No. 3

James Royer
2643 Gateway Drive
State College, PA 16801
jwr@crcog.net
814-234-3819
Centre Region Code Administration

Plumbing Code (IPC) IPC3 Ch.25 Sect 2503.5..1

Modify
Reason: Technical Feasibility – Other

Comment
Considering how long air has been permitted to be used to test plastic DWV systems and the challenges with weather and site conditions an air test should be permitted to be used to test plastic DWV systems in the IRC. - Remove "for piping systems other than plastic"

JEK COMMENT
This applies to comments 2, and 4 and covers the plumbing provisions in the IRC

In the 2015 plumbing provisions in both the IPC and the IRC, air testing of plastic piping was eliminated on the basis that failure of plastic pipe under air pressure can result in projectiles being emitted. This was discussed at the RAC and the air pressure elimination was retained in the IPC, but was deleted from the IRC.

RAC RECOMMENDATION

Modify the provision as follows:

P2503.5.1 Rough plumbing. DWV systems shall be tested on completion of the rough piping installation by water or, for piping systems other than plastic unless the pipe manufacturer allows air testing, by air, without evidence of leakage.

Reason
Reason

Air testing is often performed in cold temperatures where water cannot be used. Pipe manufacturers indicate in their instructions that air pressure testing should not be used and it was felt that the code should not override manufacturers requirements. The added statement allows that some manufacturers may allow air pressure testing and item 2 in this section reads

“2. Air test. The portion under test shall be maintained at a gauge pressure of 5 pounds per square inch (psi) (34 kPa) or 10 inches of mercury column (34 kPa). This pressure shall be held without introduction of additional air for a period of 15 minutes.”
Comment No. 4

Sarah Miller
2509 North Front St
Harrisburg, PA 17110
smiller@pabuilders.org
717-571-6488
Pennsylvania Builders Association

Plumbing Code (IPC) - IPC4 - P2906.6.1 Saddle tap fittings

Do Not Adopt
Reason: Other

Reason:
This is a fitting that is commonly used for icemaker lines and no documentation has been provided that would prove they should be prohibited.

RAC COMMENT

Modify

P2906.6.1 Saddle tap fittings. The use of saddle tap fittings and combination saddle tap and valve fittings shall be prohibited be limited to metallic piping.

Reason

The ICC comment that added this section stated “As PEX, PE-RT and CPVC tubings are becoming even more popular than ever for water distribution systems in residential buildings, there are more reports of saddle tap fittings being installed on these types of tubing. This just doesn't work out very well”.

There was no indication that there are problems with the use of saddle tap fittings on metallic pipe so the TAC felt that saddle tap fitting should still be allowed on metallic pipe.
<table>
<thead>
<tr>
<th>Code Change Number</th>
<th>Code Section</th>
<th>Reason:</th>
<th>Recommended Y or N</th>
<th>VOTE TALLY</th>
<th>Kammeneff Vote</th>
<th>Rosser Vote</th>
<th>McClure Vote</th>
<th>Kroenewind Vote</th>
<th>Classy Vote</th>
<th>Wopaciak Vote</th>
<th>Health Safety Welfare</th>
<th>Econ & Financial Impact</th>
<th>Tech Feasibility</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 3-15, Part I</td>
<td>IPC: 202 (New)</td>
<td>Adds phrase used in various places in the code. In Section 608.1, there are a lot of 7 locations where all open valves are required</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Code Coordination</td>
<td></td>
</tr>
<tr>
<td>IPC 3-15, Part I</td>
<td>IPC: 202 (New)</td>
<td>Adds phrase used in several places in the code. In sections P2003.1 and P2003.2, full open unions are required.</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Definition Update</td>
<td></td>
</tr>
<tr>
<td>IPC 6-15</td>
<td>IPC: 202 (New)</td>
<td>Adds definition which is the same one that is currently in the IPC</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Definition Update</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 7-15</td>
<td>309</td>
<td>Deletes undefined, specific definition for a swimming pool within the context of how the term is used in the few places in the IPC</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Definition Update</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 8-15</td>
<td>309</td>
<td>Deletes the requirement that all plumbing products and materials be tested</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>In line with IPCG 401.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 9-15</td>
<td>305.5 (New)</td>
<td>Third party inspections of manufacturers of cast iron and copper fittings and the couplings used to join these products together are required however not third party inspections are allowed with these essential items which must be inspected to assure compliance. The ASTM and GSP standards were modified adding the minimum requirements which are Reasonable and to minimize manufacturing issues.</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Important to make sure using the proper pipe and required coupling together in a system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 11-15</td>
<td>305.1</td>
<td>Clarifies the IPC with the IRC so that small changes do not occur. There are no new requirements being proposed.</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Code Coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 12-15</td>
<td>305.6</td>
<td>Clarifies the listing of materials that are allowed in a system of 1-1/2 inches, both 1-1/2-inch and 3-1/4-inch water lines are allowed but without triggering the need for strike plates on both sides.</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Code Coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 15-15 Part I</td>
<td>306.10 (New)</td>
<td>Smaller the size of tank could weigh up to 16 pounds when full of water, where these sizes are installed at the end of a horizontal rigid pipe from the side outlet of a tank, there is significant moment being applied to the piping.</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>No equipment support by piping it senses</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 16-15</td>
<td>309</td>
<td>These dimensions are consistent with all published test literature and manufacturers installation instructions.</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Coordination</td>
<td>Dimensions are in Table 308.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 18-15</td>
<td>309</td>
<td>49.13/14 inches and greater can be supported at 48 inches</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Coordination</td>
<td>Dimensions are in Table 308.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 19-15 Part I</td>
<td>306.6</td>
<td>Where the pipe diameters of the elbow is no longer “horizontal”, that is, 45 degrees or greater from the horizontal plane, the waste is falling and it is less likely to impact the inside of the elbow and therefore, no impact significant forces that would cause the piping system to move.</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 21-15 Part I</td>
<td>P2005.1</td>
<td>Where the pipe diameters of the elbow is no longer “horizontal”, that is, 45 degrees or greater from the horizontal plane, the waste is falling and it is less likely to impact the inside of the elbow and therefore, no impact significant forces that would cause the piping system to move.</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 22-15 Part I</td>
<td>P2005.7</td>
<td>IPC has a new air testing policy which applies to some limited air testing of sanitary piping systems, if a number of conditions are met</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Clearly defined allowable safe entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 26-15</td>
<td>431, 432, 433, 434, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447</td>
<td>The only substantial change is the listing is the listing of the word “other” before future fittings. The section addresses faucets and fixture fittings. There is no the “other” future fittings.</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 33-15</td>
<td>Table 405-1 (BC Table 2000-1)</td>
<td>Table 405-1 is a general piping area that currently defined in the code. This proposal was added to provide a fitting count for the specific use</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Clarifies code intent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC 34-15</td>
<td>Table 405-1 (BC Table 2000-1)</td>
<td>This is a new code section only. It adds the restriction between the Group 1 requirements, which are not used in requirements are no clear</td>
<td>Yes</td>
<td>6 0 1 1 1 1 1 1 1 1 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Clarifies code intent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Committee did not agree with the term "nonresidential aquatic facilities" and felt that the future court is already addressed by the International Plumbing and Gas Code (IPGC).

The main intent of the original proposal was to address business occupancies. Therefore, this public comment returns Item 3 to what is currently in the code and adds a new Item 4 to cover business occupancies only.

Where partitions are required between adjacent base metal and it includes brass and bronze. Identify materials manufactured where copper is the compositions. Copper alloy is the term used to identify materials manufactured where copper is the base metal and it includes brass and bronze.

Update Section 405.4.3 by removing the reference to ASME A112.6.1 since the requirements from standard are now covered in A112.6.2. The H10.6.1 standard is longer published by ASME.

The revised wording allows for what is a common industry practice for fixture installation in the plumbing code and adds a new Item 4 to cover business occupancies only.

There are many different copper and copper-alloy comparisons. Copper alloy is the term used to identify materials manufactured where copper is the base metal and it includes brass and bronze.

Update Section 405.4.3 by removing the references to ASME A112.6.1 since the requirements from standard are now covered in A112.6.2. The H10.6.1 standard is longer published by ASME.

The main intent of the original proposal was to address business occupancies. Therefore, this public comment returns Item 3 to what is currently in the code and adds a new Item 4 to cover business occupancies only.

The proposed addition is intended to prevent the average distribution of plumbing fixtures for each sex within two or more toilet facilities.

The proposed addition is intended to prevent the average distribution of plumbing fixtures for each sex within two or more toilet facilities.

The proposed addition is intended to prevent the average distribution of plumbing fixtures for each sex within two or more toilet facilities.

The correct water temperature to a safety shower is 100 degrees Fahrenheit. Water temperature is critical for eye wash stations.

The dishwasher waste connection requirements were added during the latest revision of the standard. This standard covers macerating toilet systems and fixtures with a pumped drainage system.

Tubs are being sold without overflow openings. The code should not be requiring plumbers to be drilling holes in tubs in the field in order to comply with the code.

Dishwashing machines made to this standard will sanitise dishes better as they generate 150 degree F water.

The dishwasher waste connection requirements must be separated between a residential unit and a commercial unit.

The proposed addition is intended to prevent the average distribution of plumbing fixtures for each sex within two or more toilet facilities.

The correct water temperature to a safety shower is 100 degrees Fahrenheit. Water temperature is critical for eye wash stations.

Where partitions are required between adjacent base metal and it includes brass and bronze. Identify materials manufactured where copper is the compositions. Copper alloy is the term used to identify materials manufactured where copper is the base metal and it includes brass and bronze.

Update Section 405.4.3 by removing the reference to ASME A112.6.1 since the requirements from standard are now covered in A112.6.2. The H10.6.1 standard is longer published by ASME.

The maximum size pump should be required for pumping systems that use pumps to provide water for fixtures connected to positive pressure plumbing systems. Only where storage tanks or tankless water heaters. Only where storage tanks or tankless water heaters. Only where storage tanks or tankless water heaters.

The dishwasher waste connection requirements were added during the latest revision of the standard. This standard covers macerating toilet systems and fixtures with a pumped drainage system.

The proposed addition is intended to prevent the average distribution of plumbing fixtures for each sex within two or more toilet facilities.

Update Section 405.4.3 by removing the reference to ASME A112.6.1 since the requirements from standard are now covered in A112.6.2. The H10.6.1 standard is longer published by ASME.

The dishwasher waste connection requirements were added during the latest revision of the standard. This standard covers macerating toilet systems and fixtures with a pumped drainage system.

Update Section 405.4.3 by removing the reference to ASME A112.6.1 since the requirements from standard are now covered in A112.6.2. The H10.6.1 standard is longer published by ASME.

The dishwasher waste connection requirements were added during the latest revision of the standard. This standard covers macerating toilet systems and fixtures with a pumped drainage system.
<table>
<thead>
<tr>
<th>IPC</th>
<th>P67-15</th>
<th>IRC Section 1019 already covers wall and floor materials in toilet facilities. There is no longer a need for this information to be in the IPC.</th>
<th>Yes</th>
<th>5</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>Yes</th>
<th>Section 422 is important and should remain in the code.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>P99-15</td>
<td>The proposal replaces a majority of heating-related facilities with the corresponding occupancy code.</td>
<td>Yes</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Remove unnecessary language</td>
</tr>
<tr>
<td>IPC</td>
<td>P70-15</td>
<td>The proposal replaces a majority of heating-related facilities with the corresponding occupancy code.</td>
<td>Yes</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Remove unnecessary language</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>P71-15</td>
<td>The section is duplicative and therefore not needed.</td>
<td>Yes</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Covered in Section 608</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>P72-15</td>
<td>The phrase “combination of such purposes” is already addressed in the list and not needed.</td>
<td>Yes</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Remove unnecessary language</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>P73-15</td>
<td>The proposal deletes language that is too broad to be practically enforceable.</td>
<td>Yes</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Remove unnecessary language</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>P75-15</td>
<td>Manufacturing is too large of a scale for ice machines and handling could be interpreted as ice machines that do not have plumbing connections.</td>
<td>Yes</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Consistency with section</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>P76-15</td>
<td>This proposal replaces a majority of heating-related facilities with the corresponding occupancy code.</td>
<td>Yes</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Consistency with IRC</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>P93-15</td>
<td>Temperature calculated flow reduction (TAFR) devices are extremely effective in preventing scalds from high temperatures, especially in a shower.</td>
<td>Yes</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Separates shower units from foot baths</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>P94-15</td>
<td>Insert fittings into “same size as the valve outlet” would not cause a restriction in flow from the relief valve which could affect the safety of the equipment.</td>
<td>Yes</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Separates shower units from foot baths</td>
<td></td>
</tr>
</tbody>
</table>
| IPC | P95-15 | Water systems in residential and commercial properties need to meet some standard. | Yes | 4 | 2 | 1 | 1 | 1 | 1 | Yes | This specifies with insert fittings, pipe size 500-
<p>| IPC | P97-15 | This proposal is needed for consistency with IRC. | Yes | 4 | 2 | 1 | 1 | 1 | 1 | Yes | See above |
| IPC | P98-15 | Adding this standard to the code is an important backstop to make sure that wells in areas not covered by state and local laws for wells are safely constructed to be able to provide a reliable water supply for the building(s). | Yes | 5 | 1 | 1 | 1 | 1 | 1 | Yes | All water systems installed in residential and commercial properties need to meet some standard. |
| IPC | P99-15 | Adding this standard to the code is an important backstop to make sure that wells in areas not covered by state and local laws for wells are safely constructed to be able to provide a reliable water supply for the building(s). | Yes | 6 | 0 | 1 | 1 | 1 | 1 | Yes | Same as above |
| IPC | P11-15 | Ultra-37.15 - Polyethylene of raised temperature resistance (PE-RT) tubing systems for pressure applications is a new consensus system standard taking effect. | Yes | 6 | 0 | 1 | 1 | 1 | 1 | Yes | New technology |</p>
<table>
<thead>
<tr>
<th>IPC</th>
<th>Table</th>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P113-15</td>
<td>P132-15</td>
<td>Part II</td>
<td>P2906.21 (New)</td>
</tr>
<tr>
<td>P114-15</td>
<td>Table 605.4</td>
<td>The proposal removes brass because brass is a copper alloy and copper alloy is the term used to identify materials manufactured where copper is the base metal and includes brass and bronze.</td>
<td></td>
</tr>
<tr>
<td>P115-15</td>
<td>P124-15</td>
<td>Part II</td>
<td>Table P2906.4, Table 605.7, Chapter 14 These are additional standards for valves that should be considered in the valve table.</td>
</tr>
<tr>
<td>P119-15</td>
<td>Table 605.5, Chapter 14</td>
<td>The proposal removes brass because brass is a copper alloy and copper alloy is the term used to identify materials manufactured where copper is the base metal and includes brass and bronze.</td>
<td></td>
</tr>
<tr>
<td>P126-15</td>
<td>Table 605.8</td>
<td>The proposed removes brass because brass is a copper alloy and it is covered in Section 605.13.</td>
<td></td>
</tr>
<tr>
<td>P127-15</td>
<td>Table 605.1</td>
<td>The table did not contain the CSA standard reference for all the valve types.</td>
<td></td>
</tr>
<tr>
<td>P128-15</td>
<td>Table 605.8</td>
<td>The standard establishes the requirements for copper alloy pipe nipples within a specified size range.</td>
<td></td>
</tr>
<tr>
<td>P129-15</td>
<td>605.14, 605.15, 605.16.3</td>
<td>The proposal removes brass because brass is a copper alloy and it is covered in Section 605.13.</td>
<td></td>
</tr>
<tr>
<td>P130-15</td>
<td>P2906.21 (New)</td>
<td>The proposed removes brass because brass is a copper alloy and it is covered in Section 605.13.</td>
<td></td>
</tr>
<tr>
<td>P134-15</td>
<td>605.24.1</td>
<td>The proposed removes brass because brass is a copper alloy and it is covered in Section 605.13.</td>
<td></td>
</tr>
<tr>
<td>P135-15</td>
<td>P2906.17.2 (New)</td>
<td>These are additional standards for valves that should be considered in the valve table.</td>
<td></td>
</tr>
<tr>
<td>P141-15</td>
<td>607.3</td>
<td>Alternative methods for accommodating thermal expansion are needed in the code.</td>
<td></td>
</tr>
<tr>
<td>P145-15</td>
<td>608.3, 608.4</td>
<td>WBC not intended to require brass for water pumps, filters, softeners, tanks and other appliances and devices that handle or treat potable water, only special equipment for sterilization, distillation, processing, cooling, or storage of ice or foods.</td>
<td></td>
</tr>
<tr>
<td>P150-15</td>
<td>P145-15</td>
<td>Part II</td>
<td>Table P2906.5, Table 605.7, Chapter 14 These are additional standards for valves that should be considered in the valve table.</td>
</tr>
</tbody>
</table>

IPC VOTING FORM

<table>
<thead>
<tr>
<th>IPC</th>
<th>Table</th>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P113-15</td>
<td>P132-15</td>
<td>Table 605.3</td>
<td>Table 605.3, Table 606.4</td>
</tr>
<tr>
<td>P113-15</td>
<td>Part II</td>
<td>Table P2906.4, Table P2906.5</td>
<td>Table 605.3, Table 606.4</td>
</tr>
<tr>
<td>P114-15</td>
<td>Table 605.3</td>
<td>The proposal removes brass because brass is a copper alloy and copper alloy is the term used to identify materials manufactured where copper is the base metal and includes brass and bronze.</td>
<td></td>
</tr>
<tr>
<td>P115-15</td>
<td>P124-15</td>
<td>Part II</td>
<td>Table P2906.4, Table 605.7, Chapter 14 These are additional standards for valves that should be considered in the valve table.</td>
</tr>
<tr>
<td>P119-15</td>
<td>Table 605.5, Chapter 14</td>
<td>The proposal removes brass because brass is a copper alloy and copper alloy is the term used to identify materials manufactured where copper is the base metal and includes brass and bronze.</td>
<td></td>
</tr>
<tr>
<td>P126-15</td>
<td>Table 605.8</td>
<td>The proposed removes brass because brass is a copper alloy and it is covered in Section 605.13.</td>
<td></td>
</tr>
<tr>
<td>P127-15</td>
<td>Table 605.1</td>
<td>The table did not contain the CSA standard reference for all the valve types.</td>
<td></td>
</tr>
<tr>
<td>P128-15</td>
<td>Table 605.8</td>
<td>The standard establishes the requirements for copper alloy pipe nipples within a specified size range.</td>
<td></td>
</tr>
<tr>
<td>P129-15</td>
<td>605.14, 605.15, 605.16.3</td>
<td>The proposal removes brass because brass is a copper alloy and it is covered in Section 605.13.</td>
<td></td>
</tr>
<tr>
<td>P130-15</td>
<td>P2906.21 (New)</td>
<td>The proposed removes brass because brass is a copper alloy and it is covered in Section 605.13.</td>
<td></td>
</tr>
<tr>
<td>P134-15</td>
<td>605.24.1</td>
<td>The proposed removes brass because brass is a copper alloy and it is covered in Section 605.13.</td>
<td></td>
</tr>
<tr>
<td>P135-15</td>
<td>P2906.17.2 (New)</td>
<td>These are additional standards for valves that should be considered in the valve table.</td>
<td></td>
</tr>
<tr>
<td>P141-15</td>
<td>607.3</td>
<td>Alternative methods for accommodating thermal expansion are needed in the code.</td>
<td></td>
</tr>
<tr>
<td>P145-15</td>
<td>608.3, 608.4</td>
<td>WBC not intended to require brass for water pumps, filters, softeners, tanks and other appliances and devices that handle or treat potable water, only special equipment for sterilization, distillation, processing, cooling, or storage of ice or foods.</td>
<td></td>
</tr>
<tr>
<td>P150-15</td>
<td>P145-15</td>
<td>Part II</td>
<td>Table P2906.5, Table 605.7, Chapter 14 These are additional standards for valves that should be considered in the valve table.</td>
</tr>
</tbody>
</table>
IPC VOTING FORM

P151-15
608.9

B.2.9

Drinking systems should use double wall heat exchangers on other applicable leaks to prevent contamination of the potable water supply for both heating and cooling.

Yes 6 0 1 1

Add listing of alternate materials.

P152-15
608.11

NFPA Standard 61 Drinking Water System Components-Health Effects addresses critical aspects of drinking water system components: whether contaminants that pass in or are present in the contaminated water will affect the water supply. These contaminants are removed by the drinking water treatment and distribution process.

Yes 6 1 1 1

Yes

P153-15
608.13.1

This section is vague and should be removed from the code. The malleable iron rows should be deleted.

Yes 5 1 1

Yes

P154-15
608.13.5, 608.13.8

The CSA standard is a viable standard for these products. The standard is already in the IPC piping code.

Yes 6 0 1 1

Yes

P156-15
608.16.1.1, 608.16.1.2

The proposed language provides appropriate backflow prevention options for coffee machines and noncorroborated drink dispensers.

Yes 6 1 1 1

Yes

P156-15
608.16.1

Cold "return" needs to be protected from backflow from the other "return".

Yes 6 0 1 1

Yes

P160-15
608.16.1, 608.16.10, 608.16.14

No backflow is required from effects of backflow from the other "return".

Yes 6 0 1 1

Yes

P161-15
608.16.1, 608.16.10, 608.16.14

There is a need to protect the potable water supply to coffee machines and noncorroborated beverage dispensers with a backflow prevention device that is suitable for a potable water supply to prevent contamination from noncorroborated beverage dispensers.

Yes 6 1 1 1

Yes

P162-15 Part I
608.16.11 (New), 608.16.12, 608.16.13

The code is silent on the protection of the water supply connection to humidifiers. Humidifiers, if not regularly serviced, can be a source of contamination to the connected water supply.

Yes 6 0 1 1

Yes

Add humidifiers to requirements.

P164-15
611.2

Part of use reverse osmosis (RO) drinking water treatment? These standards are a necessary reference to ensure the protection of public health.

Yes 6 0 1 1

Yes

Add standard for reverse osmosis requirements.

P166-15 Part I
701.12

The section is being rewritten because many jurisdictions have state and local laws regulating private sewage disposal systems and do not use the IFSCD.

Yes 6 1 1 1

Yes

P166-15 Part II
P3002.1

Some jurisdictions do not have state and local laws for private sewage disposal systems. Therefore in those cases, the IFSCD provides regulations for waste disposal.

Yes 6 0 1 1

Yes

P167-15
701.8

The section is vague and should be removed from the code.

Yes 6 1 1 1

Yes

Section was unclear whether piping was exposed or above a ceiling.

P168-15
Table 702.1

Insert a copper alloy has been relocated the standard to the Copper and Copper Alloy Rows due to changes to the table.

Yes 6 0 1 1

Yes

Updates material terminology.

P170-15 Part I
Table 702.2

ASTM F714 polyethylene pipe is sometimes used to install piping in sewers under buildings. Currently the code does not list this product for that use.

Yes 6 0 1 1

Yes

Allows alternate materials.

P173-15 Part I
Table 702.4

ASTM F714 polyethylene pipe is sometimes used to install piping in sewers under buildings. Currently the code does not list this product for that use.

Yes 6 0 1 1

Yes

Allows alternate materials.

P177-15
Table 702.3, 702.3.3, 702.14 (New)

The code change is proposed to incorporate the current ASTM and CSA standards for Polypropylene PP sanitary sewer pipe into the IPC code to bring the current with accepted pipe technology.

Yes 6 1 1 1

Yes

Allows alternate materials.

P173-15 Table 702.4

Chapter 7 is the sanitary chapter of the code. The malleable iron row should be deleted. These are not drainage pattern fittings and should not be suitable for venting systems as the containment would not readily flow back to the drain pattern.

Yes 6 1 1 1

Yes

Malleable iron is not applicable to drainage systems.

P174-15 Part I
Table 702.4

Polyethylene pipe is already in IPC table for Buildings Sewer Pipe with a corresponding entry for pipe fittings of this material was not installed in the fittings table.

Yes 6 0 1 1

Yes

Added FC to table.

P174-15 Part II
Table P3002.2

Polyethylene pipe is already in IPC table for Buildings Sewer Pipe. However, a corresponding entry for pipe fittings of this material was not installed in the fittings table.

Yes 6 0 1 1

Yes

Added FC to table.
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Text</th>
<th>Clarification of materials</th>
<th>Consistancy throughout the code</th>
<th>As long as the existing meets code requirements</th>
<th>Consistancy</th>
<th>Clarification of code intent</th>
<th>Removal of unneeded language</th>
<th>Removal of unneeded language</th>
<th>Clarification of materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>P176-15</td>
<td>708.4</td>
<td>The same proposal was approved for the 2015 IRC. This proposal is to coordinate the IPC with the same standard.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P177-15</td>
<td>704.1, Table 704.1</td>
<td>There needs to be a greater minimum pipe slope to keep grease-laden waste flowing.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P178-15 Part I</td>
<td>704.2</td>
<td>Closet flanges are pipe fittings and should comply with the standards indicated for pipe fittings in Table 702.4</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P180-15</td>
<td>705.16.1, 705.16.2</td>
<td>There needs to be a greater minimum pipe slope to keep grease-laden waste flowing.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P181-15 Part I</td>
<td>705.16.2.1</td>
<td>Closet flanges are pipe fittings and should comply with the standards indicated for pipe fittings in Table 702.4.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P184-15 Part I</td>
<td>705.16.4, 707.1</td>
<td>Closet flanges are pipe fittings and should comply with the standards indicated for pipe fittings in Table 702.4.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P185-15</td>
<td>705.18</td>
<td>The proposal removes base metal base metal in Section 705.6.2 and Section 705.7.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P186-15</td>
<td>706.1, 706.12.1, 705.12.3, 705.12.4</td>
<td>The proposal removes base metal base metal in Section 705.6.2 and Section 705.7.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P187-15 Part I</td>
<td>705.16.1</td>
<td>This proposal will not increase the cost of construction as this change is only to update the name of a material that is already in the code.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P188-15 Part II</td>
<td>720.1-7</td>
<td>The proposal removes base metal base metal in Section 705.6.2 and Section 705.7.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P189-15 Part I</td>
<td>705.16.4, 707.1, Chapter 14</td>
<td>The use of a special transition cement for this single application is widely accepted, both by local authorities having jurisdiction and other national authorities having jurisdiction and other national authorities having jurisdiction and other national authorities having jurisdiction.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P190-15 Part I</td>
<td>705.16.4, 707.12, 705.12.4</td>
<td>The use of a special transition cement for this single application is widely accepted, both by local authorities having jurisdiction and other national authorities having jurisdiction and other national authorities having jurisdiction.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P191-15 Part II</td>
<td>706.1-12, Chapter 44</td>
<td>The change is only to update the name of a material that is already in the code.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P192-15</td>
<td>709.3</td>
<td>This wording only clarifies the intent of the existing wording.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P193-15 Part I</td>
<td>708.1-6</td>
<td>There are many different copper and copper alloy compositions. Copper alloy is the term used to identify materials manufactured where copper is the base metal and it includes brass and bronze.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P194-15 Part I</td>
<td>706.1-6, 707.1</td>
<td>There are many different copper and copper alloy compositions. Copper alloy is the term used to identify materials manufactured where copper is the base metal and it includes brass and bronze.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P195-15 Part I</td>
<td>706.5-2</td>
<td>Copper alloy is the term used to identify materials manufactured where copper is the base metal and it includes brass and bronze.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P196-15</td>
<td>706.5-2</td>
<td>Simply an editorial clarification within the section.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P197-15 Part I</td>
<td>708.2</td>
<td>This wording only clarifies the intent of the existing wording.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P198-15 Part I</td>
<td>712.3.2</td>
<td>The purpose of this code change is to make the IRC consistent with the IRC where the sump cover is installed not more than 2 inches below grade.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P199-15 Part I</td>
<td>706.7.2</td>
<td>The purpose of this code change is to make the IRC consistent with the IRC where the sump cover is installed not more than 2 inches below grade.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P200-15 Part I</td>
<td>712.3.3</td>
<td>Subsections 712.3.3.1 and 712.3.3.1 provide enough guidance to the designer and installer for proper selection of discharge piping components.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P201-15 Part I</td>
<td>712.3.3</td>
<td>Subsections 712.3.3.1 and 712.3.3.1 provide enough guidance to the designer and installer for proper selection of discharge piping components.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| IPC | Yes | No | New | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Removes for bleed flow and other measuring systems expected
| IPC | Yes | No | New | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Removes for bleed flow and other measuring systems expected
| P194-15 Part II | Yes | No | New | R11.9 | 21.3 | 62.1 | 72.4 | 82.1 | 72.7 | 72.8 | 72.9 | 72.10 | 72.11 | 72.12 | 72.13 | 72.14 | 72.15 | 72.16 | Removes unmeasurable language
| P194-15 Part II | Yes | No | New | R11.9 | 21.3 | 62.1 | 72.4 | 82.1 | 72.7 | 72.8 | 72.9 | 72.10 | 72.11 | 72.12 | 72.13 | 72.14 | 72.15 | 72.16 | Removes unmeasurable language

The proposal eliminates the phrase “is not required to be installed into a cabinet and arods. The man cannot be removed because it would be too hard to connect with patient equipment.”

The proposal eliminates the phrase “inlets cannot be recessed because it is impractical to provide any clear direction; or otherwise covered in the text of this code.”

The proposal eliminates the phrase “backsdriving valves, like all plumbing products, are required to be third party listed. The listing is to the referenced standard.”

The proposal eliminates the phrase “This section was originally developed based on the notion that all valves used in a plumbing system are ‘conventional backwater valves’ and ASME A112.14.1 has two categories of backwater valves, namely ‘conventional backwater valves and normally open backwater valves.’ A normally open backwater valve allows the free movement of air through the drainage system. The connection to the public sewer is based on having a free movement of air from the public sewer through the vent terminal on the rear.”

The proposal eliminates the phrase “This proposal deletes some of the above language in the section and references NFPA 87, which is broadly accepted as the national standard for medical gas and vacuum systems.”

The proposal eliminates the phrase “This section language should remain stating that herein open position does not reduce the carrier capacity of the pipe it serves.”

The proposal eliminates the phrase “This proposal deletes a section that provides no practical value to the text. The requirements in this section are too broad to be enforceable, too generic, and otherwise covered in the text of this code.”

The proposal eliminates the phrase “This change cleans up the language in the section. The term “inlet” is consistent with patient equipment.”

The proposal removes the phrase “This proposal adds material to the referenced standard.”

The proposal removes the phrase “Yes #NAME? Consistency with NFPA standard”

The proposal removes the phrase “Permitting systems to be another source of contamination through air ports.”

The proposal removes the phrase “There is no practical value to the text. The requirements in this section are too broad to be enforceable, too generic, and otherwise covered in the text of this code.”

The proposal removes the phrase “Removes potential hazardous requirement.”

The proposal removes the phrase “Yes Adds requirement for historical Standards.”
This allowance language has been in the IRC for several code cycles and has been a frequent cause in many jurisdictions for much longer. It has been proven to work well for many years.

Since this requirement only applies to indirect wastewater systems, it should appear in Section 801.11, not as a separate section.

The proposed change recognizes the section regarding the vent terminal. There are currently three options for a vent terminal: extending the vent (number) inches, more above the roof; extending the vent more than (7) feet above the roof; or extending the vent through the side wall. However, the three requirements are separated between multiple sections. This makes the requirement readily accomplishable and can be identified in a single section that presents all the options in one main section.

It is going to allow an installation that previously wasn’t permitted thus lowering the cost of production.

The main reason for this proposal is to add new Section 803.1 to cover the very special situation of a single future combination waste and vent system.

The type is inconsistent with the intent of AVA. These are still mechanical devices with a shelf life and are subject to failure even if the correct AVA for outdoor use is installed. Failures will result in sewer gas making its way into the building.

The IRC already has this correction/clearceadon made in the test cycle and this proposal is for coordination with the IRC change.

The IRC currently requires a 72 hour test period for the test sections. This proposal suggests a 48 hour test period for the test sections. This proposal would bring the IRC into coordination with other codes.

The fixture must not discharge through a grease interceptor. If food waste passes through a grease interceptor, it greatly reduces the efficiency of the interceptor and will dramatically increase the oxygen requirements.

Section 1003.3.2 is outdated and ignores the advances of new technology.

Table 1102.4, Chapter 14 allows laundry trays to connect to clothes washer to drain to a public sewer, private sewer, or drain to a single fixture combination waste and vent system.

Table 1102.4, Chapter 14 has been amended to allow for laundry trays being connected to clothes washer to discharge to a public sewer, private sewer, or to a single fixture combination waste and vent system.

The comparison of the current version of this standard with the proposed updates is as follows:

Yes 6 0 1 1 1 1 1

Yes Allows option
In the absence of providing more informed guidance, it is important for all water storage tanks to have a means for draining or emptying the tank for maintenance purposes and cleaning in order to ensure that the water is consistent in quality and result in much better design of the system. It is necessary to have a means of collecting the rainwater available to the storage tank in order to prevent the health and safety of users.

The intent of the provisions in these sections is to provide an example list of alternative sources which are not exclusive. Required treatment and determination of suitability for an intended use will result in a much better assessment of the collected rainwater. As approval of alternative sources of reuse water is required by the Code Section, it is unnecessary to provide any list of alternative sources which are not exclusive.

However, there are many areas of the country where scuppers are used for the primary roof drain system with another set of scuppers installed as a higher elevation used for the secondary drainage. This current language in the IPC and IBC implies that scuppers are only approved for secondary roof drainage. Reclaimed water is not rainwater. Reclaimed water is reuse water, or wastewater that has been treated to an acceptable water quality standard for nonpotable use. It is necessary to have collection for nonpotable use.

IgCC Chapter 7 language to IPC Chapter 13. Section 1301.9 as referenced under section 1302.7 requires coordination with national standard for rainwater quality. Section 1303.15.9 (New) replaces list of allowable parameters with national standard reference.

The first sentence has no added value. The result is basically as initial washing of the roof runoff or rainwater that is commonly mistaken for roof washing.

The currently listed ASTM F405 is limited in size to only 3" to 6" diameter pipe. There are applications where larger diameters of perforated polyethylene pipe are required to collect subsurface water or percolate water and convey such water to a place of collection. A primary roof drain system with another set of scuppers installed as a higher elevation used for the secondary drainage system.

The current language in the IPC and IBC implies that scuppers are only approved for secondary roof drainage. Reclaimed water is not rainwater. Reclaimed water is reuse water, or wastewater that has been treated to an acceptable water quality standard for nonpotable use.
The changes as seen above will allow pipe bursting of underground building drainage piping meeting all of the other necessary requirements under these sections.

<table>
<thead>
<tr>
<th>IPC</th>
<th>P273-15 Part II</th>
<th>P2002.1, P3010, P3010.3, P3010.15, P3010.6</th>
<th>Allows use of PE piping in building sewer replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>6</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IRC-P</td>
<td>VOTE TALLY</td>
<td>Reason:</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommend Y or N</td>
<td>VOTE TALLY</td>
<td>Reason Vote</td>
</tr>
<tr>
<td>IRC-P</td>
<td>RPS-15</td>
<td>P2901.6</td>
<td>The reason for this code proposal is that there should not be a restriction against the installation of all plastic pans beneath gas-fired hot water heaters and storage tanks as there are some plastic pans that have been developed and successfully tested against tough industry standards and ratings for flammability and smoke, specifically ASTM E84 Class A standards, thus making these type of pans perfectly suitable for water leakage protection for gas-fired hot water heaters.</td>
</tr>
<tr>
<td>IRC-P</td>
<td>RPS-15</td>
<td>P2902.5, P2904.1</td>
<td>The reason behind the code by coordinating the requirements in Sections P2902.5 with P2904.1 is that the allowance to omit backflow protection for certain stand-alone systems currently permitted by Section P2904.1 was not previously coordinated with Section P2902.5, which has caused confusion in applying the code.</td>
</tr>
<tr>
<td>IRC-P</td>
<td>RP10-15</td>
<td>P2903.5</td>
<td>This proposal re-aligns both the IRC P2902.5 with the IRC P809 Water Hammer paragraphs as they were when they were first created, eliminating confusion and clearly spells out the necessary requirements for water hammer control on all plumbing systems. Originally, these two code paragraphs on water hammer control were identical.</td>
</tr>
<tr>
<td>IRC-P</td>
<td>RP12-15</td>
<td>Table P2906.6, Chapter 44</td>
<td>Successful action on this proposal will result in the update of Reference Standard ASSE 1061 to the 2011 edition for all the changes indicated in the table.</td>
</tr>
<tr>
<td>IRC-P</td>
<td>RP13-15</td>
<td>P2905.1 (New)</td>
<td>As PEX, PE-RT and CPVC fittings are becoming even more popular than ever for water distribution systems in residential buildings, there are more reports of saddle tap fittings being installed on these types of tubing. This just doesn’t work out very well</td>
</tr>
<tr>
<td>IRC-P</td>
<td>RP14-15</td>
<td>P2905.1.1, P2905.1.5, P2905.1.5.2</td>
<td>This proposal fixes an oversight that has existed for several years in this code in that Section 6 for “PEX Plastic” (P2906.1.1) should never have been subcategorized under “Solvent cementing” Section P2906.9.1.</td>
</tr>
<tr>
<td>IRC-P</td>
<td>RP15-15</td>
<td>P2906.1.4</td>
<td>This proposal fixes an oversight that has existed for several years in this code in that the Section for “PEX Plastic” (P2906.1.1) should never have been subcategorized under “Solvent cementing” Section P2906.9.1.</td>
</tr>
<tr>
<td>IRC-P</td>
<td>RP15-15</td>
<td>Table P2906.1, Table P2906.5, P2906.10, P2906.19.2 (New), Table P2906.19.3 (New)</td>
<td>This change will permit pipe and fittings meeting CSA B137.18 to be used in accordance with the Code.</td>
</tr>
<tr>
<td>IRC-P</td>
<td>RP17-15</td>
<td>P3003.3.2</td>
<td>This market place has already begun using new as well as UV light-curable primers where local inspectors allow. Many users prefer this as applied purple primers can permanently stain surfaces and cause added expenses in repair or replacement of stained areas.</td>
</tr>
<tr>
<td>Reason</td>
<td>Recommend Y or N</td>
<td>Vote Tally</td>
<td>Rosser Vote</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For</td>
<td>Against</td>
</tr>
<tr>
<td>Gas-fired toilets are referenced in 626.1 and 626.2, but they are not defined in this code.</td>
<td>Yes</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>A new generation of residential CNG fueling systems are under development that would be design certified to a new ANSI Standard</td>
<td>Yes</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Harmonizes the designation and definition of PRESS-CONNECT fittings and joints throughout the code.</td>
<td>Yes</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>The IFGC code requirements do not differentiate between the various furnace types proposed to be deleted and the terms do not appear in the code</td>
<td>Yes</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>The term brass was replaced with copper alloy throughout the IFGC (S) extracted sections. The definition revision coordinates with these changes</td>
<td>Yes</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>The IFGC code requirements do not differentiate between the various appliance regulator types and the terms do not appear in the code</td>
<td>Yes</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Add a definition for the term monitoring regulator that was added into Section 416.3</td>
<td>Yes</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Add a definition for the term series regulator that was added into Section 416.3</td>
<td>Yes</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Reason</td>
<td>Recommend Y or N</td>
<td>Vote Tally</td>
<td>Rosser Vote</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>The IFGC code requirements for unit heaters in Section 620 do not differentiate between high- and low-static unit heaters and the terms do not appear in the code. The revised simplified definition is taken from the revised definition in the 2015 National Fuel Gas Code, ANSI Z 223.1/NFPA 54.</td>
<td>Yes</td>
<td>3 2 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>The fact is that gas clothes dryers are being installed and used in residential bathrooms. This is necessary because of the shift to scaled down living spaces.</td>
<td>Yes</td>
<td>5 0 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>The language proposed in the IFGC prescribes limitations and conditions to provide the necessary safety and limitations of hazards from within the healthcare environments to the fire and ignition sources inherent to all gas-fired fireplaces and appliances</td>
<td>Yes</td>
<td>5 0 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>The new exceptions would allow for Short lengths of steel pipe that are cut from longer pipe stock, Small fittings such as bushings and couplings where markings have not been traditionally been included and Where the packaging or documentation for the part has the manufacturer's identification but the part does not</td>
<td>Yes</td>
<td>5 0 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>This requirement in the International Fuel Gas Code has far ranging impact that wasn't anticipated at the code development hearings. In many cases, there are no certification or testing requirements to use for flare nuts, tees, pipe nipples, etc</td>
<td>Yes</td>
<td>5 0 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>The proposal replaces "approved manner" with additional enforceable code requirements and reorganizes the material for clarity based on new requirements adopted into the 2015 National Fuel Gas Code, ANSI Z223.1/NFPA 54.</td>
<td>Yes</td>
<td>5 0 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>The ICC Evaluation Service has issued a listing criteria for polyethylene sleeved CSST (LC 1023) dated May 2009. The use of listed encasement systems (such as polyethylene sleeved CSST) has been included in the National Fuel Gas Code (NFPA 54) since the 2012 edition</td>
<td>Yes</td>
<td>5 0 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>There are products specifically designed as a tracer locator</td>
<td>Yes</td>
<td>5 0 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Clarifies that an appliance shut-off valve installed behind or beside a movable appliance is allowed as long as the valve can be accessed by moving the appliance</td>
<td>Yes</td>
<td>5 0 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Reason</td>
<td>Recommend Y or N</td>
<td>Vote Tally</td>
<td>Rosser Vote</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For</td>
<td>Against</td>
</tr>
<tr>
<td>Shutoff valves require independent support to prevent the possible twisting of the tubing when operating the valve.</td>
<td>Yes</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>The purpose of the tee fitting in item 6 is to test the regulator outlet/appliance inlet pressure.</td>
<td>Yes</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>A new ANSI standard for excess flow valves has been approved and published. EFVs should be required to meet that standard to help ensure minimum performance.</td>
<td>Yes</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>The IFGC is currently silent on the use of unlisted connectors for injection burners commonly referred to as Bunsen burners.</td>
<td>Yes</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>This is outdated legacy code language that was removed from the IMC and IRC last cycle and is not consistent with current practice.</td>
<td>Yes</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>There are large residential properties that contain kitchens meant to be used for extensive entertaining purposes. These kitchens are often designed by professional engineers similar to commercial cooking installations.</td>
<td>Yes</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>The proposal removes brass because brass is a copper-alloy and copper-alloy is the term used to identify materials manufactured where copper is the base metal and includes brass and bronze.</td>
<td>Yes</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>